Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511331

RESUMO

This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Origem de Replicação , Replicação do DNA , Ciclo Celular , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/genética , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo
3.
Appl Microbiol Biotechnol ; 106(8): 3231-3243, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35416487

RESUMO

Global regulatory transcription factors play a significant role in controlling microbial metabolism under genetic and environmental perturbations. A system-level effect of carbon sources such as acetate on microbial metabolism under disrupted global regulators has not been well established. Acetate is one of the major substrates available in various nutrient niches such as the mammalian gut and a keto diet. A substantial amount of acetate gets secreted in aerobic metabolism. Therefore, investigating the study on acetate metabolism is highly significant. It is known that the global regulators fis and arcA regulate acetate uptake genes in E. coli under glucose conditions. This study deciphered the growth and flux distribution of E. coli transcription regulatory knockouts Δfis, ΔarcA and double deletion mutant, ΔarcAΔfis under acetate using 13C-metabolic flux analysis (MFA), which has not been investigated before. We observed that the mutants exhibited an expeditious growth rate (~ 1.2-1.6-fold) with a proportionate increase in acetate uptake rates compared to the wild type. 13C-MFA displayed the distinct metabolic reprogramming of intracellular fluxes via the TCA cycle, anaplerotic pathway and gluconeogenesis, which conferred an advantage of a faster growth rate with better carbon usage in all the mutants. This resulted in higher metabolic fluxes through the TCA cycle (~ 18-90%), lower gluconeogenesis (~ 15-35%) and higher CO2 and ATP production with the proportional increase in growth rate. The study reveals a novel insight by stating the sub-optimality of the wild-type strain grown under acetate substrate aerobically. These mutant strains efficiently oxidize acetate, thus acting as potential candidates for the biosynthesis of isoprenoids, biofuels, vitamins and various pharmaceutical products.Key Points• Mutants exhibited a better balance between energy and precursor synthesis than WT.• Leveraged in the unravelling of regulatory control under various nutrient shifts.• Metabolic readjustment resulted in optimal biomass requirement and faster growth.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Carbono/metabolismo , Ciclo do Ácido Cítrico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética
4.
EMBO J ; 41(3): e108708, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961960

RESUMO

There is increasing evidence that prokaryotes maintain chromosome structure, which in turn impacts gene expression. We recently characterized densely occupied, multi-kilobase regions in the E. coli genome that are transcriptionally silent, similar to eukaryotic heterochromatin. These extended protein occupancy domains (EPODs) span genomic regions containing genes encoding metabolic pathways as well as parasitic elements such as prophages. Here, we investigate the contributions of nucleoid-associated proteins (NAPs) to the structuring of these domains, by examining the impacts of deleting NAPs on EPODs genome-wide in E. coli and B. subtilis. We identify key NAPs contributing to the silencing of specific EPODs, whose deletion opens a chromosomal region for RNA polymerase binding at genes contained within that region. We show that changes in E. coli EPODs facilitate an extra layer of transcriptional regulation, which prepares cells for exposure to exotic carbon sources. Furthermore, we distinguish novel xenogeneic silencing roles for the NAPs Fis and Hfq, with the presence of at least one being essential for cell viability in the presence of domesticated prophages. Our findings reveal previously unrecognized mechanisms through which genomic architecture primes bacteria for changing metabolic environments and silences harmful genomic elements.


Assuntos
Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Inativação Gênica , Heterocromatina/genética , Fator Proteico 1 do Hospedeiro/genética , Prófagos/genética , Bacillus subtilis , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/virologia , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo
5.
Nucleic Acids Res ; 49(22): 12820-12835, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871419

RESUMO

In Escherichia coli, the replication initiator DnaA oscillates between an ATP- and an ADP-bound state in a cell cycle-dependent manner, supporting regulation for chromosome replication. ATP-DnaA cooperatively assembles on the replication origin using clusters of low-affinity DnaA-binding sites. After initiation, DnaA-bound ATP is hydrolyzed, producing initiation-inactive ADP-DnaA. For the next round of initiation, ADP-DnaA binds to the chromosomal locus DARS2, which promotes the release of ADP, yielding the apo-DnaA to regain the initiation activity through ATP binding. This DnaA reactivation by DARS2 depends on site-specific binding of IHF (integration host factor) and Fis proteins and IHF binding to DARS2 occurs specifically during pre-initiation. Here, we reveal that Fis binds to an essential region in DARS2 specifically during pre-initiation. Further analyses demonstrate that ATP-DnaA, but not ADP-DnaA, oligomerizes on a cluster of low-affinity DnaA-binding sites overlapping the Fis-binding region, which competitively inhibits Fis binding and hence the DARS2 activity. DiaA (DnaA initiator-associating protein) stimulating ATP-DnaA assembly enhances the dissociation of Fis. These observations lead to a negative feedback model where the activity of DARS2 is repressed around the time of initiation by the elevated ATP-DnaA level and is stimulated following initiation when the ATP-DnaA level is reduced.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Ciclo Celular/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Retroalimentação Fisiológica , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Modelos Genéticos , Ligação Proteica , Origem de Replicação/genética , Homologia de Sequência do Ácido Nucleico
6.
Mol Microbiol ; 116(3): 766-782, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34120381

RESUMO

The intracellular pathogen Legionella pneumophila translocates >300 effector proteins into host cells, many of which are regulated at the transcriptional level. Here, we describe a novel L. pneumophila genomic island, which undergoes horizontal gene transfer within the Legionella genus. This island encodes two Icm/Dot effectors: LegK3 and a previously uncharacterized effector which we named CegK3, as well as a LuxR type regulator, which we named RegK3. Analysis of this island in different Legionella species revealed a conserved regulatory element located upstream to the effector-encoding genes in the island. Further analyses, including gene expression analysis, mutagenesis of the RegK3 regulatory element, controlled expression studies, and gel-mobility shift assays, all demonstrate that RegK3 directly activates the expression levels of legK3 and cegK3 effector-encoding genes. Additionally, the expression of all the components of the island is silenced by the Fis repressors. Comparison of expression profiles of these three genes among different Legionella species revealed variability in the activation levels mediated by RegK3, which were positively correlated with the Fis-mediated repression. Furthermore, LegK3 and CegK3 effectors moderately inhibit yeast growth, and importantly, they have a strong synergistic inhibitory effect on yeast growth, suggesting these two effectors are not only co-regulated but also might function together.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Doença dos Legionários/microbiologia , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
7.
J Bacteriol ; 202(11)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32205461

RESUMO

Factor for inversion stimulation (Fis) is a versatile DNA binding protein that plays an important role in coordinating bacterial global gene expression in response to growth phases and environmental stresses. Previously, we demonstrated that Fis regulates the type III secretion system (T3SS) in Pseudomonas aeruginosa In this study, we explored the role of Fis in the antibiotic resistance of P. aeruginosa and found that mutation of the fis gene increases the bacterial susceptibility to ciprofloxacin. We further demonstrated that genes related to pyocin biosynthesis are upregulated in the fis mutant. The pyocins are produced in response to genotoxic agents, including ciprofloxacin, and the release of pyocins results in lysis of the producer cell. Thus, pyocin biosynthesis genes sensitize P. aeruginosa to ciprofloxacin. We found that PrtN, the positive regulator of the pyocin biosynthesis genes, is upregulated in the fis mutant. Genetic experiments and electrophoretic mobility shift assays revealed that Fis directly binds to the promoter region of prtN and represses its expression. Therefore, our results revealed novel Fis-mediated regulation on pyocin production and bacterial resistance to ciprofloxacin in P. aeruginosaIMPORTANCEPseudomonas aeruginosa is an important opportunistic pathogenic bacterium that causes various acute and chronic infections in human, especially in patients with compromised immunity, cystic fibrosis (CF), and/or severe burn wounds. About 60% of cystic fibrosis patients have a chronic respiratory infection caused by P. aeruginosa The bacterium is intrinsically highly resistant to antibiotics, which greatly increases difficulties in clinical treatment. Therefore, it is critical to understand the mechanisms and the regulatory pathways that are involved in antibiotic resistance. In this study, we elucidated a novel regulatory pathway that controls the bacterial resistance to fluoroquinolone antibiotics, which enhances our understanding of how P. aeruginosa responds to ciprofloxacin.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Fator Proteico para Inversão de Estimulação/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Piocinas/biossíntese , Proteínas de Bactérias/genética , Fator Proteico para Inversão de Estimulação/genética , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética
8.
Genomics ; 112(2): 1264-1272, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31356968

RESUMO

Fis (Factor for inversion stimulation) and H-NS (Histone-like nucleoid-structuring protein) are two well-known nucleoid-associated proteins (NAPs) in proteobacteria, which play crucial roles in genome organization and transcriptional regulation. We performed RNA-sequencing to identify genes regulated by these NAPs. Study reveals that Fis and H-NS affect expression of 462 and 88 genes respectively in Escherichia coli at mid-exponential growth phase. By integrating available ChIP-seq data, we identified direct and indirect regulons of Fis and H-NS proteins. Functional analysis reveals that Fis controls expression of genes involved in translation, oxidative phosphorylation, sugar metabolism and transport, amino acid metabolism, bacteriocin transport, cell division, two-component system, biofilm formation, pilus organization and lipopolysaccharide biosynthesis pathways. However, H-NS represses expression of genes in cell adhesion, recombination, biofilm formation and lipopolysaccharide biosynthesis pathways under mid-exponential growth condition. The current regulatory networks thus provide a global glimpse of coordinated regulatory roles for these two important NAPs.


Assuntos
Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Proteínas de Fímbrias/genética , Redes Reguladoras de Genes , Transcriptoma , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Estudo de Associação Genômica Ampla
9.
FEBS Lett ; 594(5): 791-798, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31639222

RESUMO

Previously, we demonstrated that transcription-coupled DNA supercoiling (TCDS) potently activated or inhibited nearby promoters in Escherichia coli even in the presence of all four DNA topoisomerases, suggesting that DNA topoisomerases are not the only factors regulating TCDS. A different mechanism exists to confine this localized DNA supercoiling. Using an in vivo system containing the TCDS-activated leu-500 promoter (Pleu-500 ), we find that the nucleoid-associated Fis protein potently inhibits the TCDS-mediated activation of Pleu-500 . We also find that deletion of the fis gene significantly enhances TCDS-mediated inhibition of transcription of three genes purH, yieP, and yrdA divergently coupled to different rrn operons in the early log phase. These results suggest that Fis protein forms DNA topological barriers upon binding to its recognition sites, blocks TCDS diffusion, and potently inhibits the TCDS-activated Pleu-500 .


Assuntos
DNA Super-Helicoidal/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Regiões Promotoras Genéticas , DNA Bacteriano/química , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Fatores de Transcrição/genética , Transcrição Gênica
10.
J Phys Chem B ; 123(48): 10152-10162, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31710235

RESUMO

DNA supercoiling, where the DNA strand forms a writhe to relieve torsional stress, plays a vital role in packaging the genetic material in cells. Experiment, simulation, and theory have all demonstrated how supercoiling emerges due to the over- or underwinding of the DNA strand. Nucleoid-associated proteins (NAPs) help structure DNA in prokaryotes, yet the role that they play in the supercoiling process has not been as thoroughly investigated. We develop a coarse-grained simulation to model DNA supercoiling in the presence of proteins, providing a rigorous physical understanding of how NAPs affect supercoiling behavior. Specifically, we demonstrate how the force and torque necessary to form supercoils are affected by the presence of NAPs. NAPs that bend DNA stabilize the supercoil, thus shifting the transition between extended and supercoiled DNAs. We develop a theory to explain how NAP binding affects DNA supercoiling. This provides insight into how NAPs modulate DNA compaction via a combination of supercoiling and local protein-dependent deformations.


Assuntos
DNA Bacteriano/química , DNA Super-Helicoidal/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Fator Proteico para Inversão de Estimulação/química , Sítios de Ligação , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica , Torque
11.
J Am Chem Soc ; 141(45): 18113-18126, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31566963

RESUMO

As a master transcription regulator, the Fis protein influences over two hundred genes of E. coli. The Fis protein's nonspecific binding to DNA is widely acknowledged, and its kinetics of dissociation from DNA is strongly influenced by its surroundings: the dissociation rate increases as the concentration of the Fis protein in the solution phase increases. In this study, we use computational methods to explore the global binding energy landscape of the Fis1:Fis2:DNA ternary complex. The complex contains a binary-Fis molecular dyad whose formation relies on complex structural rearrangements. The simulations allow us to distinguish several different pathways for the dissociation of the protein from DNA with different functional outcomes and involving different protein stoichiometries: (1) simple exchange of proteins and (2) cooperative unbinding of two Fis proteins to yield bare DNA. In the case of exchange, the protein on the DNA is replaced by the solution-phase protein through competition for DNA binding sites. This process seen in fluorescence imaging experiments has been called facilitated dissociation. In the latter case of cooperative unbinding of pairs, two neighboring Fis proteins on DNA form a unique binary-Fis configuration via protein-protein interactions, which in turn leads to the codissociation of both molecules simultaneously, a process akin to the "molecular stripping" seen in the NFκB/IκB genetic broadcasting system. This simulation shows that the existence of multiple binding configurations of transcription factors can have a significant impact on the kinetics and outcome of transcription factor dissociation from DNA, with important implications for the systems biology of gene regulation by Fis.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , DNA/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Fator Proteico para Inversão de Estimulação/química , Cinética , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Termodinâmica
12.
Nucleic Acids Res ; 47(16): 8874-8887, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31616952

RESUMO

Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis ß-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.


Assuntos
Bacteriófago lambda/genética , Cromossomos Bacterianos/química , DNA Nucleotidiltransferases/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/química , Proteínas Virais/química , Sítio Alostérico , Bacteriófago lambda/metabolismo , Sequência de Bases , Sítios de Ligação , Cromossomos Bacterianos/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação , Alinhamento de Sequência , Termodinâmica , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Cell Syst ; 8(3): 212-225.e9, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30904377

RESUMO

Recent studies on targeted gene integrations in bacteria have demonstrated that chromosomal location can substantially affect a gene's expression level. However, these studies have only provided information on a small number of sites. To measure position effects on transcriptional propensity at high resolution across the genome, we built and analyzed a library of over 144,000 genome-integrated, standardized reporters in a single mixed population of Escherichia coli. We observed more than 20-fold variations in transcriptional propensity across the genome when the length of the chromosome was binned into broad 4 kbp regions; greater variability was observed over smaller regions. Our data reveal peaks of high transcriptional propensity centered on ribosomal RNA operons and core metabolic genes, while prophages and mobile genetic elements were enriched in less transcribable regions. In total, our work supports the hypothesis that E. coli has evolved gene-independent mechanisms for regulating expression from specific regions of its genome.


Assuntos
Cromossomos Bacterianos/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , DNA Bacteriano/metabolismo , DNA Ribossômico , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo
14.
PLoS One ; 13(8): e0201841, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071101

RESUMO

Root colonization of plant growth-promoting bacteria is a complex multistep process that is influenced by several factors. For example, during adherence to plant roots, bacteria have to endure reactive oxygen species (ROS) produced by plants. In this study, we report that the global transcriptional regulator Fis is involved in the regulation of ROS-tolerance of Pseudomonas putida and thereby affects barley root colonization. Fis overexpression reduced both ROS-tolerance and adherence to barley roots and activated the transcription of the nuoA-N operon encoding NADH dehydrogenase I, the first enzyme of a membrane-bound electron-transport chain. The nuoA-N knockout mutation in the fis-overexpression background increased the ROS-tolerance and adherence to barley roots. We show that nuoA has two transcriptional start sites located 104 and 377 nucleotides upstream of the coding sequence, indicating the presence of two promoters. The DNase I footprint analysis revealed four Fis binding sites: Fis-nuo1 to Fis-nuo4, situated between these two promoters. Site-directed mutagenesis in a promoter-lacZ reporter and ß-galactosidase assay further confirmed direct binding of Fis to Fis-nuo2 and probably to Fis-nuo4 but not to Fis-nuo1 and Fis-nuo3. Additionally, the results implied that Fis binding to Fis-nuo4 could affect transcription of the nuoA-N operon by modification of upstream DNA topology. Moreover, our transposon mutagenesis results indicated that Fis might be involved in the regulation of several alternative ROS detoxification processes utilizing NADH.


Assuntos
Fator Proteico para Inversão de Estimulação/metabolismo , Óperon , Raízes de Plantas/microbiologia , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/genética , Transcrição Gênica , Sítios de Ligação , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Hordeum/microbiologia , Modelos Genéticos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Pseudomonas putida/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/microbiologia , beta-Galactosidase/metabolismo
15.
Bioinformatics ; 34(4): 609-616, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444234

RESUMO

Motivation: Many DNA-binding proteins recognize their target sequences indirectly, by sensing DNA's response to mechanical distortion. ThreaDNA estimates this response based on high-resolution structures of the protein-DNA complex of interest. Implementing an efficient nanoscale modeling of DNA deformations involving essentially no adjustable parameters, it returns the profile of deformation energy along whole genomes, at base-pair resolution, within minutes on usual laptop/desktop computers. Our predictions can also be easily combined with estimations of direct selectivity through a generalized form of position-weight-matrices. The formalism of ThreaDNA is accessible to a wide audience. Results: We demonstrate the importance of indirect readout for the nucleosome as well as the bacterial regulators Fis and CRP. Combined with the direct contribution provided by usual sequence motifs, it significantly improves the prediction of sequence selectivity, and allows quantifying the two distinct physical mechanisms underlying it. Availability and implementation: Python software available at bioinfo.insa-lyon.fr, natively executable on Linux/MacOS systems with a user-friendly graphical interface. Galaxy webserver version available. Contact: sam.meyer@insa-lyon.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Modelos Moleculares , Software , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Histonas/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/metabolismo
16.
Nucleic Acids Res ; 45(21): 12565-12576, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040720

RESUMO

Protein-DNA binding is a fundamental component of gene regulatory processes, but it is still not completely understood how proteins recognize their target sites in the genome. Besides hydrogen bonding in the major groove (base readout), proteins recognize minor-groove geometry using positively charged amino acids (shape readout). The underlying mechanism of DNA shape readout involves the correlation between minor-groove width and electrostatic potential (EP). To probe this biophysical effect directly, rather than using minor-groove width as an indirect measure for shape readout, we developed a methodology, DNAphi, for predicting EP in the minor groove and confirmed the direct role of EP in protein-DNA binding using massive sequencing data. The DNAphi method uses a sliding-window approach to mine results from non-linear Poisson-Boltzmann (NLPB) calculations on DNA structures derived from all-atom Monte Carlo simulations. We validated this approach, which only requires nucleotide sequence as input, based on direct comparison with NLPB calculations for available crystal structures. Using statistical machine-learning approaches, we showed that adding EP as a biophysical feature can improve the predictive power of quantitative binding specificity models across 27 transcription factor families. High-throughput prediction of EP offers a novel way to integrate biophysical and genomic studies of protein-DNA binding.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , Fatores de Transcrição/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Genoma , Genômica , Proteínas de Homeodomínio/metabolismo , Aprendizado de Máquina , Modelos Moleculares , Método de Monte Carlo , Conformação de Ácido Nucleico , Fosfatos/química , Ligação Proteica , Eletricidade Estática , Fatores de Transcrição/química
17.
PLoS One ; 12(9): e0185482, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945818

RESUMO

LapA is the biggest protein in Pseudomonas putida and a key factor for biofilm formation. Its importance and posttranslational regulation is rather thoroughly studied but less is known about the transcriptional regulation. Here we give evidence that transcription of lapA in LB-grown bacteria is initiated from six promoters, three of which display moderate RpoS-dependence. The global transcription regulator Fis binds to the lapA promoter area at six positions in vitro, and Fis activates the transcription of lapA while overexpressed in cells. Two of the six Fis binding sites, Fis-A7 and Fis-A5, are necessary for the positive effect of Fis on the transcription of lapA in vivo. Our results indicate that Fis binding to the Fis-A7 site increases the level of transcription from the most distal promoter of lapA, whereas Fis binding to the Fis-A5 site could be important for modifying the promoter area topology.


Assuntos
Genes Bacterianos , Pseudomonas putida/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Biofilmes/crescimento & desenvolvimento , Mapeamento Cromossômico , DNA Bacteriano/genética , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Pseudomonas putida/fisiologia , Fator sigma/genética , Fator sigma/metabolismo
18.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28874446

RESUMO

The lipopolysaccharide (LPS) produced by the Gram-negative bacterial pathogen Pasteurella multocida has phosphoethanolamine (PEtn) residues attached to lipid A, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and galactose. In this report, we show that PEtn is transferred to lipid A by the P. multocida EptA homologue, PetL, and is transferred to galactose by a novel PEtn transferase that is unique to P. multocida called PetG. Transcriptomic analyses indicated that petL expression was positively regulated by the global regulator Fis and negatively regulated by an Hfq-dependent small RNA. Importantly, we have identified a novel PEtn transferase called PetK that is responsible for PEtn addition to the single Kdo molecule (Kdo1), directly linked to lipid A in the P. multocida glycoform A LPS. In vitro assays showed that the presence of a functional petL and petK, and therefore the presence of PEtn on lipid A and Kdo1, was essential for resistance to the cationic, antimicrobial peptide cathelicidin-2. The importance of PEtn on Kdo1 and the identification of the transferase responsible for this addition have not previously been shown. Phylogenetic analysis revealed that PetK is the first representative of a new family of predicted PEtn transferases. The PetK family consists of uncharacterized proteins from a range of Gram-negative bacteria that produce LPS glycoforms with only one Kdo molecule, including pathogenic species within the genera Vibrio, Bordetella, and Haemophilus We predict that many of these bacteria will require the addition of PEtn to Kdo for maximum protection against host antimicrobial peptides.


Assuntos
Proteínas de Bactérias/genética , Proteínas Sanguíneas/toxicidade , Farmacorresistência Bacteriana/genética , Etanolaminofosfotransferase/genética , Regulação Bacteriana da Expressão Gênica , Pasteurella multocida/genética , Pasteurella multocida/patogenicidade , Precursores de Proteínas/toxicidade , Animais , Proteínas de Bactérias/metabolismo , Galinhas , Biologia Computacional , Etanolaminofosfotransferase/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Galactose/química , Galactose/metabolismo , Perfilação da Expressão Gênica , Heptoses/química , Heptoses/metabolismo , Isoenzimas , Lipídeo A/química , Lipídeo A/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/patologia , Pasteurella multocida/classificação , Pasteurella multocida/efeitos dos fármacos , Filogenia , Açúcares Ácidos/química , Açúcares Ácidos/metabolismo , Transcriptoma
19.
Methods Mol Biol ; 1624: 85-97, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28842878

RESUMO

The advent of Chromatin Immunoprecipitation sequencing (ChIP-Seq) has allowed the identification of genomic regions bound by a DNA binding protein in-vivo on a genome-wide scale. The impact of the DNA binding protein on gene expression can be addressed using transcriptome experiments in appropriate genetic settings. Overlaying the above two sources of data enables us to dissect the direct and indirect effects of a DNA binding protein on gene expression. Application of these techniques to Nucleoid Associated Proteins (NAPs) and Global Transcription Factors (GTFs) has underscored the complex relationship between DNA-protein interactions and gene expression change, highlighting the role of combinatorial control. Here, we demonstrate the usage of ChIP-Seq to infer binding properties and transcriptional effects of NAPs such as Fis and HNS, and the GTF CRP in the model organism Escherichia coli K12 MG1655 (E. coli).


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Sítios de Ligação , Biologia Computacional , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/metabolismo , Expressão Gênica , Genoma Bacteriano , Fatores de Transcrição/química
20.
PLoS One ; 11(9): e0162391, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598999

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Fator Proteico para Inversão de Estimulação/genética , Proteínas de Fímbrias/genética , GTP Fosfo-Hidrolases/genética , Regulação Bacteriana da Expressão Gênica , Fosfoproteínas/genética , Fatores de Virulência/genética , Sequência de Bases , Sítios de Ligação , Infecções por Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Proteínas de Fímbrias/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Mutação , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...